Java面试准备之网络知识一

hresh 613 0

Java面试准备之网络知识一

http 响应码 301 和 302 代表的是什么?有什么区别?

301,302 都是 HTTP 状态的编码,都代表着某个 URL 发生了转移。

区别:

  • 301 redirect: 301 代表永久性转移(Permanently Moved)。

  • 302 redirect: 302 代表暂时性转移(Temporarily Moved )。

forward 和 redirect 的区别?

Forward 和 Redirect 代表了两种请求转发方式:直接转发和间接转发(重定向)。

直接转发方式(Forward):

1.是服务器内部的重定向,服务器直接访问目标地址的 url 网址,把里面的东西读取出来,但是客户端并不知道,因此用 forward 的话,客户端浏览器的网址是不会发生变化的。

2.关于 request: 由于在整个定向的过程中用的是同一个 request,因此 forward 会将 request 的信息带到被重定向的 jsp 或者 servlet 中使用。

间接转发方式(Redirect):

1.是客户端的重定向,是完全的跳转。即服务器返回的一个 url 给客户端浏览器,然后客户端浏览器会重新发送一次请求,到新的 url 里面,因此浏览器中显示的 url 网址会发生变化。

2.因为这种方式比 forward 多了一次网络请求,因此效率会低于 forward。

URI和URL的区别是什么?

  • URI(Uniform Resource Identifier) 是统一资源标志符,可以唯一标识一个资源,好比我们的身份证号。
  • URL(Uniform Resource Location) 是统一资源定位符,可以提供该资源的路径,好比我们的家庭住址。它是一种具体的 URI,即 URL 可以用来标识一个资源,而且还指明了如何定位到这个资源。

简述 tcp 和 udp 的区别?

  • TCP 是面向有连接的通讯协议,经过三次握手建立连接,会话结束后四次挥手;UDP 是无连接的。
  • TCP 协议保证数据按序发送,按序到达,提供超时重传保证可靠性;但 UDP 不保证按序到达,甚至不保证到达,只是努力交付,即便是按序发送的序列,也不保证按序到达。
  • TCP 协议所需资源多,TCP 首部需 20 个字节;UDP 首部只需 8 个字节。
  • TCP 是一对一的连接;UDP 则可以支持一对一、一对多、多对多的通信。
  • TCP 是面向字节流的服务;UDP 是面向报文的服务。

TCP 协议如何保证可靠传输

  1. 应用数据被分割成 TCP 认为最适合发送的数据块。
  2. TCP 给发送的每一个包进行编号,接收方对数据包进行排序,把有序数据传送给应用层。
  3. 校验和: TCP 将保持它首部和数据的检验和。这是一个端到端的检验和,目的是检测数据在传输过程中的任何变化。如果收到段的检验和有差错,TCP 将丢弃这个报文段和不确认收到此报文段。
  4. TCP 的接收端会丢弃重复的数据。
  5. 流量控制: TCP 连接的每一方都有固定大小的缓冲空间,TCP的接收端只允许发送端发送接收端缓冲区能接纳的数据。当接收方来不及处理发送方的数据,能提示发送方降低发送的速率,防止包丢失。TCP 使用的流量控制协议是可变大小的滑动窗口协议。 (TCP 利用滑动窗口实现流量控制)
  6. 拥塞控制: 当网络拥塞时,减少数据的发送。
  7. ARQ 协议: 也是为了实现可靠传输的,它的基本原理就是每发完一个分组就停止发送,等待对方确认。在收到确认后再发下一个分组。
  8. 超时重传: 当 TCP 发出一个段后,它启动一个定时器,等待目的端确认收到这个报文段。如果不能及时收到一个确认,将重发这个报文段。

ARQ协议

自动重传请求(Automatic Repeat-reQuest,ARQ)是OSI模型中数据链路层和传输层的错误纠正协议之一。它通过使用确认和超时这两个机制,在不可靠服务的基础上实现可靠的信息传输。如果发送方在发送后一段时间之内没有收到确认帧,它通常会重新发送。ARQ包括停止等待ARQ协议和连续ARQ协议。

停止等待ARQ协议

停止等待协议是为了实现可靠传输的,它的基本原理就是每发完一个分组就停止发送,等待对方确认(回复ACK)。如果过了一段时间(超时时间后),还是没有收到 ACK 确认,说明没有发送成功,需要重新发送,直到收到确认后再发下一个分组。

在停止等待协议中,若接收方收到重复分组,就丢弃该分组,但同时还要发送确认。

优缺点:

  • 优点: 简单
  • 缺点: 信道利用率低,等待时间长

1) 无差错情况:

发送方发送分组,接收方在规定时间内收到,并且回复确认.发送方再次发送。

2) 出现差错情况(超时重传):

停止等待协议中超时重传是指只要超过一段时间仍然没有收到确认,就重传前面发送过的分组(认为刚才发送过的分组丢失了)。因此每发送完一个分组需要设置一个超时计时器,其重传时间应比数据在分组传输的平均往返时间更长一些。这种自动重传方式常称为 自动重传请求 ARQ 。另外在停止等待协议中若收到重复分组,就丢弃该分组,但同时还要发送确认。连续 ARQ 协议 可提高信道利用率。发送维持一个发送窗口,凡位于发送窗口内的分组可连续发送出去,而不需要等待对方确认。接收方一般采用累积确认,对按序到达的最后一个分组发送确认,表明到这个分组位置的所有分组都已经正确收到了。

3) 确认丢失和确认迟到

  • 确认丢失 :确认消息在传输过程丢失。当A发送M1消息,B收到后,B向A发送了一个M1确认消息,但却在传输过程中丢失。而A并不知道,在超时计时过后,A重传M1消息,B再次收到该消息后采取以下两点措施:1. 丢弃这个重复的M1消息,不向上层交付。 2. 向A发送确认消息。(不会认为已经发送过了,就不再发送。A能重传,就证明B的确认消息丢失)。
  • 确认迟到 :确认消息在传输过程中迟到。A发送M1消息,B收到并发送确认。在超时时间内没有收到确认消息,A重传M1消息,B仍然收到并继续发送确认消息(B收到了2份M1)。此时A收到了B第二次发送的确认消息。接着发送其他数据。过了一会,A收到了B第一次发送的对M1的确认消息(A也收到了2份确认消息)。处理如下:1. A收到重复的确认后,直接丢弃。2. B收到重复的M1后,也直接丢弃重复的M1。

连续ARQ协议

连续 ARQ 协议可提高信道利用率。发送方维持一个发送窗口,凡位于发送窗口内的分组可以连续发送出去,而不需要等待对方确认。接收方一般采用累计确认,对按序到达的最后一个分组发送确认,表明到这个分组为止的所有分组都已经正确收到了。

优缺点:

  • 优点: 信道利用率高,容易实现,即使确认丢失,也不必重传。
  • 缺点: 不能向发送方反映出接收方已经正确收到的所有分组的信息。 比如:发送方发送了 5条 消息,中间第三条丢失(3号),这时接收方只能对前两个发送确认。发送方无法知道后三个分组的下落,而只好把后三个全部重传一次。这也叫 Go-Back-N(回退 N),表示需要退回来重传已经发送过的 N 个消息。***

拥塞控制

在某段时间,若对网络中某一资源的需求超过了该资源所能提供的可用部分,网络的性能就要变坏。这种情况就叫拥塞。拥塞控制就是为了防止过多的数据注入到网络中,这样就可以使网络中的路由器或链路不致过载。拥塞控制所要做的都有一个前提,就是网络能够承受现有的网络负荷。拥塞控制是一个全局性的过程,涉及到所有的主机,所有的路由器,以及与降低网络传输性能有关的所有因素。相反,流量控制往往是点对点通信量的控制,是个端到端的问题。流量控制所要做到的就是抑制发送端发送数据的速率,以便使接收端来得及接收。

为了进行拥塞控制,TCP 发送方要维持一个 拥塞窗口(cwnd) 的状态变量。拥塞控制窗口的大小取决于网络的拥塞程度,并且动态变化。发送方让自己的发送窗口取为拥塞窗口和接收方的接受窗口中较小的一个。

TCP的拥塞控制采用了四种算法,即 慢开始拥塞避免快重传快恢复。在网络层也可以使路由器采用适当的分组丢弃策略(如主动队列管理 AQM),以减少网络拥塞的发生。

  • 慢开始: 慢开始算法的思路是当主机开始发送数据时,如果立即把大量数据字节注入到网络,那么可能会引起网络阻塞,因为现在还不知道网络的符合情况。经验表明,较好的方法是先探测一下,即由小到大逐渐增大发送窗口,也就是由小到大逐渐增大拥塞窗口数值。cwnd初始值为1,每经过一个传播轮次,cwnd加倍。
  • 拥塞避免: 拥塞避免算法的思路是让拥塞窗口cwnd缓慢增大,即每经过一个往返时间RTT就把发送放的cwnd加1.
  • 快重传与快恢复: 在 TCP/IP 中,快速重传和恢复(fast retransmit and recovery,FRR)是一种拥塞控制算法,它能快速恢复丢失的数据包。没有 FRR,如果数据包丢失了,TCP 将会使用定时器来要求传输暂停。在暂停的这段时间内,没有新的或复制的数据包被发送。有了 FRR,如果接收机接收到一个不按顺序的数据段,它会立即给发送机发送一个重复确认。如果发送机接收到三个重复确认,它会假定确认件指出的数据段丢失了,并立即重传这些丢失的数据段。有了 FRR,就不会因为重传时要求的暂停被耽误。  当有单独的数据包丢失时,快速重传和恢复(FRR)能最有效地工作。当有多个数据信息包在某一段很短的时间内丢失时,它则不能很有效地工作。

简要介绍三次握手和四次挥手

(1) 第一次握手:建立连接时,客户端 A 发送 SYN 包(SYN=j)到服务器 B,并进入 SYN_SEND 状态,等待服务器 B 确认。

(2) 第二次握手:服务器 B 收到 SYN 包,必须确认客户 A 的 SYN(ACK=j+1),同时自己也发送一个 SYN 包(SYN=k),即 SYN+ACK 包,此时服务器 B 进入 SYN_RECV 状态。

(3) 第三次握手:客户端 A 收到服务器 B 的 SYN+ACK 包,向服务器 B 发送确认包 ACK(ACK=k+1),此包发送完毕,客户端 A 和服务器 B 进入 ESTABLISHED 状态,完成三次握手。

完成三次握手,客户端与服务器开始传送数据。

由于 TCP 连接是全双工的,因此每个方向都必须单独进行关闭。这个原则是当一方完成它的数据发送任务后就能发送一个 FIN 来终止这个方向的连接。收到一个 FIN 只意味着这一方向上没有数据流动,一个 TCP 连接在收到一个 FIN 后仍能发送数据。首先进行关闭的一方将执行主动关闭,而另一方执行被动关闭。

(1)客户端A发送一个FIN,用来关闭客户A到服务器B的数据传送(报文段4)。

(2)服务器B收到这个FIN,它发回一个ACK,确认序号为收到的序号加1(报文段5)。和SYN一样,一个FIN将占用一个序号。

(3)服务器B关闭与客户端A的连接,发送一个FIN给客户端A(报文段6)。

(4)客户端A发回ACK报文确认,并将确认序号设置为收到序号加1(报文段7)。

推荐阅读:

为什么建立连接协议是三次握手,而关闭连接却是四次握手呢?

这是因为服务端的 LISTEN 状态下的 SOCKET 当收到 SYN 报文的连接请求后,它可以把 ACK 和 SYN(ACK起应答作用,而SYN起同步作用)放在一个报文里来发送。但关闭连接时,当收到对方的 FIN 报文通知时,它仅仅表示对方没有数据发送给你了;但未必你所有的数据都全部发送给对方了,所以你可能未必会马上会关闭 SOCKET,也即你可能还需要发送一些数据给对方之后,再发送 FIN 报文给对方来表示你同意现在可以关闭连接了,所以它这里的 ACK 报文和 FIN 报文多数情况下都是分开发送的。

在 TCP 建立连接的三次握手连接阶段,如果客户端发送的ACK包丢了,那么客户端和服务端分别进行什么处理呢?

相信了解 tcp 协议的人,三次握手的过程肯定很了解了。第三次的 ack 包丢失就是说在 client 端接收到 syn + ack 之后,向 server 发送的 ack 包 由于各种原因 server 没有收到。这时 client, server 分别会进行怎样的处理呢?

Server 端

第三次的ACK在网络中丢失,那么Server 端该TCP连接的状态为SYN_RECV,并且会根据 TCP的超时重传机制,会等待3秒、6秒、12秒后重新发送SYN+ACK包,以便Client重新发送ACK包。

而Server重发SYN+ACK包的次数,可以通过设置/proc/sys/net/ipv4/tcp_synack_retries修改,默认值为5.

如果重发指定次数之后,仍然未收到 client 的ACK应答,那么一段时间后,Server自动关闭这个连接。

Client 端

在linux 中,client 一般是通过 connect() 函数来连接服务器的,而connect()是在 TCP的三次握手的第二次握手完成后就成功返回值。也就是说 client 在接收到 SYN+ACK包,它的TCP连接状态就为 established (已连接),表示该连接已经建立。那么如果 第三次握手中的ACK包丢失的情况下,Client 向 server端发送数据,Server端将以 RST包响应,方能感知到Server的错误。

你了解 SYN攻击吗

什么是 SYN 攻击(SYN Flood)?

在三次握手过程中,服务器发送 SYN-ACK 之后,收到客户端的 ACK 之前的 TCP 连接称为半连接(half-open connect)。此时服务器处于 SYN_RCVD 状态。当收到 ACK 后,服务器才能转入 ESTABLISHED 状态.

SYN 攻击指的是,攻击客户端在短时间内伪造大量不存在的IP地址,向服务器不断地发送SYN包,服务器回复确认包,并等待客户的确认。由于源地址是不存在的,服务器需要不断的重发直至超时,这些伪造的SYN包将长时间占用未连接队列,正常的SYN请求被丢弃,导致目标系统运行缓慢,严重者会引起网络堵塞甚至系统瘫痪。

SYN 攻击是一种典型的 DoS/DDoS 攻击。

如何检测 SYN 攻击?

检测 SYN 攻击非常的方便,当你在服务器上看到大量的半连接状态时,特别是源IP地址是随机的,基本上可以断定这是一次SYN攻击。在 Linux/Unix 上可以使用系统自带的 netstats 命令来检测 SYN 攻击。

如何防御 SYN 攻击?

SYN攻击不能完全被阻止,除非将TCP协议重新设计。我们所做的是尽可能的减轻SYN攻击的危害,常见的防御 SYN 攻击的方法有如下几种:

  • 缩短超时(SYN Timeout)时间
  • 增加最大半连接数
  • 过滤网关防护
  • SYN cookies技术

TIME_WAIT 状态是如何产生的?

在tcp四次握手中:首先调用close()发起主动关闭的一方,在发送最后一个 ACK 之后会进入 time_wait 的状态,也就说该发送方会保持 2MSL 时间之后才会回到初始状态。MSL 指的是数据包在网络中的最大生存时间。产生这种结果使得这个 TCP 连接在 2MSL 连接等待期间,定义这个连接的四元组(客户端IP地址和端口,服务端IP地址和端口号)不能被使用

为什么 TIME_WAIT 状态还需要等 2MSL 后才能返回到 CLOSED 状态?

Java面试准备之网络知识一

MSL(Maximum Segment Lifetime),又叫报文最大生存时间,TCP允许不同的实现可以设置不同的MSL值。它指的是任何报文在网络上存在的最长时间,超过这个时间报文将被丢弃。

第一,保证客户端发送的最后一个ACK报文能够到达服务器,因为这个ACK报文可能丢失,站在服务器的角度来看,我已经发送了FIN+ACK报文请求断开连接了,客户端还没有给我回应,应该是我发送的请求断开报文它没有收到,于是服务器又会重新发送一次,而客户端就能在这个2MSL时间段内收到这个重传的报文,接着给出回应报文,并且会重启2MSL计时器。

第二,防止类似与“三次握手”中提到了的“已经失效的连接请求报文段”出现在本连接中。客户端发送完最后一个确认报文后,在这个2MSL时间中,就可以使本连接持续的时间内所产生的所有报文段都从网络中消失。这样新的连接中不会出现旧连接的请求报文。

关于 MSL 推荐阅读:https://www.cnblogs.com/zhangkele/p/10323588.html

TIME_WAIT 状态如何避免?

首先服务器可以设置 SO_REUSEADDR 套接字选项来通知内核,如果端口忙,但TCP连接位于 TIME_WAIT 状态时可以重用端口。在一个非常有用的场景就是,如果你的服务器程序停止后想立即重启,而新的套接字依旧希望使用同一端口,此时 SO_REUSEADDR 选项就可以避免 TIME_WAIT 状态。

为什么不能用两次握手进行连接?

为了实现可靠数据传输, TCP 协议的通信双方, 都必须维护一个序列号, 以标识发送出去的数据包中, 哪些是已经被对方收到的。 三次握手的过程即是通信双方相互告知序列号起始值, 并确认对方已经收到了序列号起始值的必经步骤。

如果只是两次握手, 至多只有连接发起方的起始序列号能被确认, 另一方选择的序列号则得不到确认。

如果已经建立了连接,但是客户端突然出现故障了怎么办?

TCP还设有一个保活计时器,显然,客户端如果出现故障,服务器不能一直等下去,白白浪费资源。服务器每收到一次客户端的请求后都会重新复位这个计时器,时间通常是设置为2小时,若两小时还没有收到客户端的任何数据,服务器就会发送一个探测报文段,以后每隔75秒发送一次。若一连发送10个探测报文仍然没反应,服务器就认为客户端出了故障,接着就关闭连接。

什么是TCP粘包? socket 中造成粘包的原因是什么? 哪些情况会发生粘包现象?

TCP 粘包通俗来讲,就是发送方发送的多个数据包,到接收方后粘连在一起,导致数据包不能完整的体现发送的数据。

导致 TCP 粘包的原因,可能是发送方的原因,也有可能是接受方的原因。

发送方由于 TCP 需要尽可能高效和可靠,所以 TCP 协议默认采用 Nagle 算法,以合并相连的小数据包,再一次性发送,以达到提升网络传输效率的目的。但是接收方并不知晓发送方合并数据包,而且数据包的合并在 TCP 协议中是没有分界线的,所以这就会导致接收方不能还原其本来的数据包。

Java面试准备之网络知识一

接收方 TCP 是基于“流”的。网络传输数据的速度可能会快过接收方处理数据的速度,这时候就会导致,接收方在读取缓冲区时,缓冲区存在多个数据包。在 TCP 协议中接收方是一次读取缓冲区中的所有内容,所以不能反映原本的数据信息。

Java面试准备之网络知识一

一般的解决方案大概下面几种:

  • 发送定长包。如果每个消息的大小都是一样的,那么在接收方只要累计接收数据,直到数据等于一个定长的数值就将它作为一个消息。
  • 包尾加上\r\n 标记。FTP 协议正是这么做的。但问题在于如果数据正文中也含有\r\n,则会误判为消息的边界。
  • 包头加上包体长度。包头是定长的 4 个字节,说明了包体的长度。接收方先接收包体长度,依据包体长度来接收包体。

发表评论 取消回复
表情 图片 链接 代码

分享